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Linear Recurrences

Example
The Fibonacci Numbers are the numbers in the sequence

1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, . . .

and can be defined by the linear recurrence relation

fn+2 = fn+1 + fn for all n ≥ 0,

with the initial conditions f0 = 1 and f1 = 1.

Problem
Find f100.

Instead of using the recurrence to compute f100, we’d like to find a formula for
fn that holds for all n ≥ 0.



Definitions
A sequence of numbers x0, x1, x2, x3, . . . is defined recursively if each
number in the sequence is determined by the numbers that occur before it
in the sequence.
A linear recurrence of length k has the form

xn+k = a1xn+k−1 + a2xn+k−2 + · · ·+ akxn, n ≥ 0,

for some real numbers a1, a2, . . . , ak.



Example
The simplest linear recurrence has length one, so has the form

xn+1 = axn for n ≥ 0,

with a ∈ R and some initial value x0.
In this case,

x1 = ax0

x2 = ax1 = a2x0

x3 = ax2 = a3x0

...
...

...
xn = axn−1 = anx0

Therefore, xn = anx0.



Example
Find a formula for xn if

xn+2 = 2xn+1 + 3xn for n ≥ 0,

with x0 = 0 and x1 = 1.

Solution. Define Vn =

[
xn

xn+1

]
for each n ≥ 0. Then

V0 =

[
x0

x1

]
=

[
0
1

]
,

and for n ≥ 0,

Vn+1 =

[
xn+1

xn+2

]
=

[
xn+1

2xn+1 + 3xn

]



Example (continued)

Now express Vn+1 =

[
xn+1

2xn+1 + 3xn

]
as a matrix product:

Vn+1 =

[
xn+1

2xn+1 + 3xn

]
=

[
0 1
3 2

] [
xn

xn+1

]
= AVn

This is a linear dynamical system, so we can apply the techniques from
§3.3, provided that A is diagonalizable.

cA(x) = det(xI − A) =

∣∣∣∣ x −1
−3 x − 2

∣∣∣∣ = x2 − 2x − 3 = (x − 3)(x + 1)

Therefore A has eigenvalues λ1 = 3 and λ2 = −1, and is diagonalizable.



Example (continued)

~x1 =

[
1
3

]
is a basic eigenvector corresponding to λ1 = 3, and

~x2 =

[
−1
1

]
is a basic eigenvector corresponding to λ2 = −1.

Furthermore P =
[
~x1 ~x2

]
=

[
1 −1
3 1

]
is invertible and is the

diagonalizing matrix for A, and P−1AP = D =

[
3 0
0 −1

]
Writing P−1V0 =

[
b1

b2

]
, we get

[
b1

b2

]
=

1

4

[
1 1
−3 1

] [
0
1

]
=

[ 1
4
1
4

]



Example (continued)
Therefore,

Vn =

[
xn

xn+1

]
= b1λ

n
1~x1 + b2λ

n
2~x2

=
1

4
3n

[
1
3

]
+

1

4
(−1)n

[
−1
1

]
,

and so
xn =

1

4
3n − 1

4
(−1)n.



Example
Solve the recurrence relation

xk+2 = 5xk+1 − 6xk, k ≥ 0

with x0 = 0 and x1 = 1.

Solution. Write

Vk+1 =

[
xk+1

xk+2

]
=

[
xk+1

5xk+1 − 6xk

]
=

[
0 1
−6 5

] [
xk

xk+1

]

Find the eigenvalues and corresponding eigenvectors for

A =

[
0 1
−6 5

]



Example (continued)

A has eigenvalues λ1 = 2 with corresponding eigenvector ~x1 =

[
1
2

]
, and

λ2 = 3 with corresponding eigenvector ~x2 =

[
1
3

]
.

P =

[
1 1
2 3

]
,P−1 =

[
3 −1
−2 1

]
,

and [
b1

b2

]
= P−1V0 =

[
3 −1
−2 1

] [
0
1

]
=

[
−1
1

]
Finally,

Vk =

[
xk

xk+1

]
= b1λ

k
1~x1 + b2λ

k
2~x2 = (−1)2k

[
1
2

]
+ 3k

[
1
3

]



Example [
xk

xk+1

]
= (−1)2k

[
1
2

]
+ 3k

[
1
3

]
and therefore

xk = 3k − 2k.
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