Math 221: LINEAR ALGEBRA

Chapter 3. Determinants and Diagonalization §3-4. Application to Linear Recurrences

Le Chen ${ }^{1}$
Emory University, 2021 Spring

(last updated on $01 / 25 / 2021$)

Linear Recurrences

Linear Recurrences

Example

The Fibonacci Numbers are the numbers in the sequence

$$
1,1,2,3,5,8,13,21,34,55,89, \ldots
$$

and can be defined by the linear recurrence relation

$$
\mathrm{f}_{\mathrm{n}+2}=\mathrm{f}_{\mathrm{n}+1}+\mathrm{f}_{\mathrm{n}} \text { for all } \mathrm{n} \geq 0
$$

with the initial conditions $\mathrm{f}_{0}=1$ and $\mathrm{f}_{1}=1$.

Problem
Find f_{100}.
Instead of using the recurrence to compute f_{100}, we'd like to find a formula for f_{n} that holds for all $\mathrm{n} \geq 0$.

Definitions

A sequence of numbers $\mathrm{x}_{0}, \mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}, \ldots$ is defined recursively if each number in the sequence is determined by the numbers that occur before it in the sequence.
A linear recurrence of length k has the form

$$
x_{n+k}=a_{1} x_{n+k-1}+a_{2} x_{n+k-2}+\cdots+a_{k} x_{n}, n \geq 0
$$

for some real numbers $a_{1}, a_{2}, \ldots, a_{k}$.

Example

The simplest linear recurrence has length one, so has the form

$$
\mathrm{x}_{\mathrm{n}+1}=\mathrm{a} \mathrm{x}_{\mathrm{n}} \text { for } \mathrm{n} \geq 0 \text {, }
$$

with $\mathrm{a} \in \mathbb{R}$ and some initial value x_{0}.
In this case,

$$
\begin{aligned}
\mathrm{x}_{1} & =a \mathrm{x}_{0} \\
\mathrm{x}_{2} & =a \mathrm{x}_{1}=\mathrm{a}^{2} \mathrm{x}_{0} \\
\mathrm{x}_{3} & =a \mathrm{x}_{2}=\mathrm{a}^{3} \mathrm{x}_{0} \\
\vdots & \vdots \vdots \\
\mathrm{x}_{\mathrm{n}} & =a \mathrm{x}_{\mathrm{n}-1}=\mathrm{a}^{\mathrm{n}} \mathrm{x}_{0}
\end{aligned}
$$

Therefore, $\mathrm{x}_{\mathrm{n}}=\mathrm{a}^{\mathrm{n}} \mathrm{x}_{0}$.

Example

Find a formula for x_{n} if

$$
\mathrm{x}_{\mathrm{n}+2}=2 \mathrm{x}_{\mathrm{n}+1}+3 \mathrm{x}_{\mathrm{n}} \text { for } \mathrm{n} \geq 0
$$

with $\mathrm{x}_{0}=0$ and $\mathrm{x}_{1}=1$.
Solution. Define $V_{n}=\left[\begin{array}{c}x_{n} \\ x_{n+1}\end{array}\right]$ for each $n \geq 0$. Then

$$
\mathrm{V}_{0}=\left[\begin{array}{l}
\mathrm{x}_{0} \\
\mathrm{x}_{1}
\end{array}\right]=\left[\begin{array}{l}
0 \\
1
\end{array}\right]
$$

and for $\mathrm{n} \geq 0$,

$$
V_{n+1}=\left[\begin{array}{c}
x_{n+1} \\
x_{n+2}
\end{array}\right]=\left[\begin{array}{c}
x_{n+1} \\
2 x_{n+1}+3 x_{n}
\end{array}\right]
$$

Example (continued)
Now express $V_{n+1}=\left[\begin{array}{c}x_{n+1} \\ 2 x_{n+1}+3 x_{n}\end{array}\right]$ as a matrix product:

$$
V_{n+1}=\left[\begin{array}{c}
x_{n+1} \\
2 x_{n+1}+3 x_{n}
\end{array}\right]=\left[\begin{array}{ll}
0 & 1 \\
3 & 2
\end{array}\right]\left[\begin{array}{c}
x_{n} \\
x_{n+1}
\end{array}\right]=A V_{n}
$$

This is a linear dynamical system, so we can apply the techniques from §3.3, provided that A is diagonalizable.

$$
c_{A}(x)=\operatorname{det}(x I-A)=\left|\begin{array}{cc}
x & -1 \\
-3 & x-2
\end{array}\right|=x^{2}-2 x-3=(x-3)(x+1)
$$

Therefore A has eigenvalues $\lambda_{1}=3$ and $\lambda_{2}=-1$, and is diagonalizable.

Example (continued)
$\overrightarrow{\mathrm{x}}_{1}=\left[\begin{array}{l}1 \\ 3\end{array}\right]$ is a basic eigenvector corresponding to $\lambda_{1}=3$, and
$\overrightarrow{\mathrm{x}}_{2}=\left[\begin{array}{c}-1 \\ 1\end{array}\right]$ is a basic eigenvector corresponding to $\lambda_{2}=-1$.
Furthermore $\mathrm{P}=\left[\begin{array}{ll}\overrightarrow{\mathrm{x}}_{1} & \overrightarrow{\mathrm{x}}_{2}\end{array}\right]=\left[\begin{array}{cc}1 & -1 \\ 3 & 1\end{array}\right]$ is invertible and is the
diagonalizing matrix for A , and $\mathrm{P}^{-1} \mathrm{AP}=\mathrm{D}=\left[\begin{array}{cc}3 & 0 \\ 0 & -1\end{array}\right]$
Writing $\mathrm{P}^{-1} \mathrm{~V}_{0}=\left[\begin{array}{l}\mathrm{b}_{1} \\ \mathrm{~b}_{2}\end{array}\right]$, we get

$$
\left[\begin{array}{l}
\mathrm{b}_{1} \\
\mathrm{~b}_{2}
\end{array}\right]=\frac{1}{4}\left[\begin{array}{cc}
1 & 1 \\
-3 & 1
\end{array}\right]\left[\begin{array}{l}
0 \\
1
\end{array}\right]=\left[\begin{array}{l}
\frac{1}{4} \\
\frac{1}{4}
\end{array}\right]
$$

Example (continued)
Therefore,

$$
\begin{aligned}
\mathrm{V}_{\mathrm{n}}=\left[\begin{array}{c}
\mathrm{x}_{\mathrm{n}} \\
\mathrm{x}_{\mathrm{n}+1}
\end{array}\right] & =\mathrm{b}_{1} \lambda_{1}^{\mathrm{n}} \overrightarrow{\mathrm{x}}_{1}+\mathrm{b}_{2} \lambda_{2}^{\mathrm{n}} \overrightarrow{\mathrm{x}}_{2} \\
& =\frac{1}{4} 3^{\mathrm{n}}\left[\begin{array}{l}
1 \\
3
\end{array}\right]+\frac{1}{4}(-1)^{\mathrm{n}}\left[\begin{array}{c}
-1 \\
1
\end{array}\right],
\end{aligned}
$$

and so

$$
\mathrm{x}_{\mathrm{n}}=\frac{1}{4} 3^{\mathrm{n}}-\frac{1}{4}(-1)^{\mathrm{n}}
$$

Example

Solve the recurrence relation

$$
\mathrm{x}_{\mathrm{k}+2}=5 \mathrm{x}_{\mathrm{k}+1}-6 \mathrm{x}_{\mathrm{k}}, \mathrm{k} \geq 0
$$

with $\mathrm{x}_{0}=0$ and $\mathrm{x}_{1}=1$.
Solution. Write

$$
\mathrm{V}_{\mathrm{k}+1}=\left[\begin{array}{c}
\mathrm{x}_{\mathrm{k}+1} \\
\mathrm{x}_{\mathrm{k}+2}
\end{array}\right]=\left[\begin{array}{c}
\mathrm{x}_{\mathrm{k}+1} \\
5 \mathrm{x}_{\mathrm{k}+1}-6 \mathrm{x}_{\mathrm{k}}
\end{array}\right]=\left[\begin{array}{cc}
0 & 1 \\
-6 & 5
\end{array}\right]\left[\begin{array}{c}
\mathrm{x}_{\mathrm{k}} \\
\mathrm{x}_{\mathrm{k}+1}
\end{array}\right]
$$

Find the eigenvalues and corresponding eigenvectors for

$$
A=\left[\begin{array}{cc}
0 & 1 \\
-6 & 5
\end{array}\right]
$$

Example (continued)
A has eigenvalues $\lambda_{1}=2$ with corresponding eigenvector $\overrightarrow{\mathrm{x}}_{1}=\left[\begin{array}{l}1 \\ 2\end{array}\right]$, and $\lambda_{2}=3$ with corresponding eigenvector $\overrightarrow{\mathrm{x}}_{2}=\left[\begin{array}{l}1 \\ 3\end{array}\right]$.

$$
\mathrm{P}=\left[\begin{array}{ll}
1 & 1 \\
2 & 3
\end{array}\right], \mathrm{P}^{-1}=\left[\begin{array}{cc}
3 & -1 \\
-2 & 1
\end{array}\right],
$$

and

$$
\left[\begin{array}{l}
\mathrm{b}_{1} \\
\mathrm{~b}_{2}
\end{array}\right]=\mathrm{P}^{-1} \mathrm{~V}_{0}=\left[\begin{array}{cc}
3 & -1 \\
-2 & 1
\end{array}\right]\left[\begin{array}{l}
0 \\
1
\end{array}\right]=\left[\begin{array}{c}
-1 \\
1
\end{array}\right]
$$

Finally,

$$
\mathrm{V}_{\mathrm{k}}=\left[\begin{array}{c}
\mathrm{x}_{\mathrm{k}} \\
\mathrm{x}_{\mathrm{k}+1}
\end{array}\right]=\mathrm{b}_{1} \lambda_{1}^{\mathrm{k}} \overrightarrow{\mathrm{x}}_{1}+\mathrm{b}_{2} \lambda_{2}^{\mathrm{k}} \overrightarrow{\mathrm{x}}_{2}=(-1) 2^{\mathrm{k}}\left[\begin{array}{l}
1 \\
2
\end{array}\right]+3^{\mathrm{k}}\left[\begin{array}{l}
1 \\
3
\end{array}\right]
$$

Example

$$
\left[\begin{array}{c}
\mathrm{x}_{\mathrm{k}} \\
\mathrm{x}_{\mathrm{k}+1}
\end{array}\right]=(-1) 2^{\mathrm{k}}\left[\begin{array}{l}
1 \\
2
\end{array}\right]+3^{\mathrm{k}}\left[\begin{array}{l}
1 \\
3
\end{array}\right]
$$

and therefore

$$
\mathrm{x}_{\mathrm{k}}=3^{\mathrm{k}}-2^{\mathrm{k}} .
$$

